

B.K. BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS A CBSE DAY-CUM-BOYS' RESIDENTIAL SCHOOL

TERM-1 EXAMINATION 2025-26 CHEMISTRY(043)

Class: XI ANSWER KEY Duration: 3 Hours
Date: /09/2025 Max. Marks:70
Admission no: Roll no:

General Instructions:

- (i) All questions are compulsory.
- (ii) The question paper has five sections and 33 questions.
- (iii) Section—A has 16 questions of 1 mark each; Section—B has 5 questions of 2 marks each; Section—C has 7 questions of 3 marks each; Section—D has 2 case-based questions of 4 marks each; and Section—E has 3 questions of 5 marks each.
- (iv) There is no overall choice. Answer all 33 questions. However, internal choices have been provided in some questions. A student has to attempt only one of the alternatives in such questions.

(v) Wherever necessary, neat and properly labeled diagrams should be drawn.

SECTION-A

Q. No. 1 to 12 are multiple choice questions. Only one of the choices is correct. Select and write the correct choice as well as the answer to these questions.

Q.no Question Marks
1. (c) 1 g Li(s)

Q.no	<u>Question</u>	Marks
1.	(c) 1 g Li(s)	1
2.	(d)Both (a) and (b)	1
3.	(a) 4	1
4.	(c) 9	1
5.	$(c)1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}4s^1$	1
6.	(b) Azimuthal quantum number	1
7.	(d) 7	1
8.	(d) S	1
9.	(d) C < N < F < O	1
10.	(a) Germanium	1
11.	(b) 120^0	1
12.	(c) 3,2	1
	Question No. 13 to 16 consist of two statements – Assertion (A) and Reason (R). Answer	
	these questions by selecting the appropriate option given below:	
	A. Both A and R are true, and R is the correct explanation of A.	
	B. Both A and R are true, and R is not the correct explanation of A.	
	C. A is true but R is false.	
	D. A is false but R is true.	
	D. II is failed out it is true.	

13.	A	1
14.	A	1
15.	A	1
16.	D	1
	SECTION-B	
17.	n/weight of solvent	2
18.	C10 H24 Fe	2
19.	Cloured hard catalyst alloys	2
20.	Head to head leteral strong week	2
21.	Head to head ,lateral, strong, weak	2
21.	Attempt either option A or B. A. Z=19 valency 1 unpaired 1	2
	A. Z=19 valency 1 unpaired 1 OR	
	B. 2,8	
	D. 2,8	
	SECTION-C	
22.	(i) 44 g (ii)22 g (iii) 22 g.	3
23.		3
24.	(a) n/V (b) n/ W (c) na/na+ nb Statement	3
<i>2</i> 4.	The principle is given by:	3
	The principle is given by.	
	$\Delta x \Delta p \ge h/4\pi$	
	$\Delta \lambda \Delta \rho \geq m + n$	
	The minimum uncertainty in the momentum of the electron is	
	5.27×10-25kgms-1	
25.		3
25.		3
	X X X X X X X X X X X X X X X X X X X	
26.	Attempt A OR B	3
	Amount of energy required to remove the electron from isolated gaseous atom. Size	
	stability	
	OR C. El	
	C. Electronic configurationD. Stability and size	
27.	Calculate formal charge (a) 0 +1 and -1	3
21.	(b) 1s and 1s combuine together	
	(b) is and is combanic tozether	

	(a) Bond order = Nb-Na/2	
	(b) Bond order = 0	
	SECTION-D	
29.	. (1+1+2)	4
	1. 2s	
	2. a. $n = 0$, $l = 0$, $m = 0$, $s = +1/2$. $n = 0$ not possible	
	3. Statement	
	OR	
	a. 2p	
20	b. 4s	4
30.	(a) B and C. 2 (b) p block are fixed but d block are veriable 2	4
	(b) p block are fixed but d block are variable 2 OR	
	(b) Gr 17 they need only 1 electron	
	SECTION-E	
31.	$3d^{10}4s^1 \ 3d^{10}4s^2 \ 3d^54s^2$	5
31.	Account for Stability of half filled and completely filled subshells.	
	OR	
	Principal Quantum Number (n):	
	• Significance: Determines the electron's energy level and the size of its	
	orbital. Higher 'n' values indicate higher energy levels and larger orbitals, meaning	
	the electron is farther from the nucleus.	
	• Examples: n=1, 2, 3, correspond to the K, L, M, shells, respectively.	
	Azimuthal (or Angular Momentum) Quantum Number (l):	
	• Significance:	
	Defines the shape of an electron's orbital and the subshell to which it belongs.	
	• Values:	
	Can range from 0 to n-1. l=0, 1, and 2 correspond to s, p, and d orbitals, respectively.	
	• Shapes: s orbitals are spherical, p orbitals are dumbbell-shaped, and d orbitals have more complex	
	shapes.	
	Magnetic Quantum Number (ml):	
	• Significance:	
	Specifies the spatial orientation of an orbital in space and determines the number of orbitals	
	within a subshell.	
	Values:	
	Can range from -l to +l, including 0. For example, if l=1 (p orbital), ml can be -1, 0, or +1,	
	indicating three p orbitals oriented along different axes.	
	Spin Quantum Number (ms):	
	• Significance: Describes the intrinsic angular momentum of an electron, which is	
	quantized and referred to as "spin." It indicates the direction of the electron's spin,	
	either clockwise or counterclockwise.	
	• Values: Only two possible values: +1/2 (spin-up) and -1/2 (spin-down)	

22		-
32.	(i) unununium (a) Li Na K (Increasing order of metallic character)	5
	(a) Et va K (increasing order of incrame character) (b) F Cl Br, (Increasing order of non-metallic character)	
	(iii) 3 rd pd 16 th group	
	(iv) N P As Sb Bi	
	OR	
	(a) Use the periodic table to answer the following questions.	
	(i) C	
	(ii) Ca Mg any	
	(iii) O,S any (b) Assign the position of the element having outer electronic configuration.	
	(b) Assign the position of the element having outer electronic configuration: (i) 2 nd gr and 17 pd	
	(ii) 3 rd group	
	(II) 3 ld gloup	
33.	Hybridization in chemistry is the concept of mixing atomic orbitals to form new hybrid	5
	orbitals with different energy levels and shapes. These hybrid orbitals are then used in	
	bonding. The three main types of hybridization involving s and p orbitals are sp, sp ² , and	
	sp ³	
	1. sp Hybridization:	
	• In this type, one s orbital and one p orbital of an atom mix to form two sp	
	hybrid orbitals.	
	The two sp orbitals are oriented linearly, 180 degrees apart, resulting in a linear molecular grounds.	
	linear molecular geometry.Example: Carbon dioxide (CO₂) where the carbon atom is sp	
	hybridized. The molecule has a linear shape due to the sp hybridization of	
	the carbon atom.	
	2. 2. sp ² Hybridization:	
	 One s orbital and two p orbitals of an atom combine to create three sp² 	
	hybrid orbitals.	
	• These sp ² orbitals are arranged in a trigonal planar shape, with bond angles	
	of 120 degrees.	
	• Example: Boron trichloride (BCl ₃). The boron atom in BCl ₃ undergoes sp ²	
	hybridization, resulting in a trigonal planar geometry.	
	 3. 3. sp³ Hybridization: This involves the mixing of one s orbital and three p orbitals to produce four 	
	sp ³ hybrid orbitals.	
	 These orbitals are directed towards the corners of a tetrahedron, with bond 	
	angles of approximately 109.5 degrees.	
	• Example: Methane (CH ₄). The carbon atom in methane is sp ³ hybridized,	
	resulting in a tetrahedral molecular geometry.	
	OR	
	(i) Tetra atomic polar molecule: Ammonia (NH3).	
	(ii) Tetra atomic non-polar molecule: Phosphorus (P4).	
	(iii) Molecule having six bond pairs: Sulfur hexafluoride (SF6).	
	(iv) Shape of sp3d hybrid orbitals: Trigonal bipyramidal.	
	(v) Shape of sp3d2 hybrid orbitals: Octahedral	

(Vi) :0::0:	
**************************************	****